R语言学习笔记之

Standalone模式:Standalone模式运行的Spark集群对不同的应用程序采用先进先出(FIFO)的顺序进行调度。默认情况下每个应用程序会独占所有可用节点的资源。

现在版本的SparkR只能运行在standalone模式下

问题1:安装问题

由于R涉及到Fortran语言,要下载gcc-gfortran包

安装步骤:1)将R-3.2.3.tar.gz解压        2)./configure       3)make         4)make install(这步可以没有)         5)配置环境变量 vi .bash_profile 

./configure的时候会出现以下错误: 

--with-readline=yes (default) and headers/libs are not available  这是由于需要依赖readline-devel包的缘故 yum install readline-devel即可

configure: error: cannot compile a simple Fortran program 这是由于需要依赖gcc-gfortran包的缘故 yum install gcc-gfortran即可

configure: error: --with-x=yes (default) and X11 headers/libs are not available 这是由于需要依赖libXt-devel包的缘故 yum install libXt-devel即可

以上步骤依赖了较多的包:①gcc ②gcc-c++ ③readline-devel ④gcc-gfortran ⑤libXt-devel

 

[plain] view plain copy
 
  1. yum install libXt-devel  
  2. yum install readline-devel  
[plain] view plain copy
 
  1. yum install gcc  
  2. yum install gcc-c++  
  3. yum install gcc-gfortran  
  4. tar -zxvf R-3.2.3.tar.gz  
  5. cd R-3.2.3  
  6. ./configure  
  7. make  

 

 

问题2:

 

unsupported URL scheme
Warning: unable to access index for repository https://rweb.crmda.ku.edu/cran/src/contrib

镜像问题,解决方式有两种:1)换镜像,即在选择的时候改   2)install.packages("RODBC", dependencies = TRUE, repos = "http://cran.rstudio.com/")

 

 

问题3:在安装R包的时候遇见错误

configure: error: "ODBC headers sql.hand sqlext.h not found"

是因为没有在Linux 下安装ODBC包。RODBC 需要 unixODBC 和unixODBC development 包,使用YUM 安装之后即可解决。

yum install unixODBC

yum install unixODBC-devel

 

则之后再install.packages("RODBC", dependencies = TRUE, repos = "http://cran.rstudio.com/")

一直连不上远程数据库,要查看一下是不是网络不通,ping一下远程主机。

 

 

SparkR编程示例:

 

[plain] view plain copy
 
  1. #如果直接调用的sparkR,则不用设置Sys.setenv和.libPaths,直接library(SparkR)即可  
[plain] view plain copy
 
  1. #Sys.setenv(SPARK_HOME = "D:/StudySoftWare/Spark/spark-1.5.2-bin-hadoop2.6")  
  2. #.libPaths(c(file.path(Sys.getenv("SPARK_HOME"),"R","lib"), .libPaths()))  
  3. library(SparkR)  
  4. sc <- sparkR.init(master = "local")  
[plain] view plain copy
 
  1. #sc <- sparkR.init(master = "spark://192.168.133.11:7077") 以集群方式运行  
  2. sqlContext <- sparkRSQL.init(sc)  
  3. DF <- createDataFrame(sqlContext, faithful)  
  4. head(DF)  
  5. localDF <- data.frame(name=c("John", "Smith", "Sarah"), age=c(19, 23, 18))  
  6. df <- createDataFrame(sqlContext, localDF)  
  7. # Print its schema  
  8. printSchema(df)  
  9. # root  
  10. #  |-- name: string (nullable = true)  
  11. #  |-- age: double (nullable = true)  
  12.   
  13. # Create a DataFrame from a JSON file  
  14. path <- file.path(Sys.getenv("SPARK_HOME"), "examples/src/main/resources/people.json")  
  15. peopleDF <- jsonFile(sqlContext, path)  
  16. printSchema(peopleDF)  
  17.   
  18. # Register this DataFrame as a table.  
  19. registerTempTable(peopleDF, "people")  
  20.   
  21. # SQL statements can be run by using the sql methods provided by sqlContext  
  22. teenagers <- sql(sqlContext, "SELECT name FROM people WHERE age >= 13 AND age <= 19")  
  23.   
  24. # Call collect to get a local data.frame  
  25. teenagersLocalDF <- collect(teenagers)  
  26.   
  27. # Print the teenagers in our dataset   
  28. print(teenagersLocalDF)  
  29.   
  30. # Stop the SparkContext now  
  31. sparkR.stop()  



 

 

Java.io.IOException: Cannot run program "Rscript": error=2, No such file or directory  遇到这种错误是因为:

looks like the issue was that code was looking for Rscript under "/usr/bin". Our default installation was /usr/revolutionr.
Just created a link Rscript in /usr/bin that points to /usr/revolution/bin/Revoscript

或者拷贝一份Rscript到/usr/bin目录下即可,参考:https://github.com/RevolutionAnalytics/RHadoop/issues/87

 

示例二:wordCount

 

[plain] view plain copy
 
  1. library(SparkR)   
  2. sparkR.stop()    
  3. #调用sparkR的时候会自动的初始化一个SparkContext,默认是local模式  
  4. sc <- sparkR.init(master="spark://<pre name="code" class="plain">192.168.133.11  

:7077","WordCount")#sparkR.init(master = "", appName = "SparkR",sparkHome = Sys.getenv("SPARK_HOME"), sparkEnvir = list(),sparkExecutorEnv = list(), s#parkJars = "", sparkPackages = "")


[plain] view plain copy
 
  1. lines <- SparkR:::textFile(sc, "hdfs://namenode主机名/user/root/test/word.txt")  
[plain] view plain copy
 
  1. words <- SparkR:::flatMap(lines, function(line) { strsplit(line, " ")[[1]] })  
[plain] view plain copy
 
  1. wordCount <- SparkR:::lapply(words, function(word) { list(word, 1L) })  
[plain] view plain copy
 
  1. counts <- SparkR:::reduceByKey(wordCount, "+", 2L)  
[plain] view plain copy
 
  1. #如果要保存到hdfs中,则path要写成"hdfs://namenode主机名/user/root/test/sparkR.txt") path要给出全路径  
[plain] view plain copy
 
  1. SparkR:::saveAsTextFile(counts, "hdfs://namenode主机名/user/root/test/sparkR.txt")    
  2. ##如果要保存到hdfs中,则path要写成"hdfs://namenode主机名/user/root/test/sparkR.txt") path要给出全路径
    ##如果要将createDataFrame(hc,生成的 sparkr dataframe 以文件形式存到hive中 需要先将其转为rdd
    data_in_rdd <- SparkR:::toRDD(data_in)
    SparkR:::saveAsTextFile(data_in_rdd, evo_table_name_lower_with_path)

[plain] view plain copy
 
  1. output <- SparkR:::collect(counts)  


API documentation1:http://amplab-extras.github.io/SparkR-pkg/rdocs/1.2/index.html,该网址给出的API要这样调用SparkR:::函数名

 

 

API documentation2:http://spark.apache.org/docs/1.5.2/api/R/index.html,该网址给出的API可以直接调用。

;