深度优先算法和广度优先算法

2、深度优先和广度优先

深度优先DFS

1、访问顶点V
2、从V的未被访问的邻接点出发,对图进行深度优先遍历;
3、直到访问到与V相通的节点;
4、若此时图中尚有顶点未被访问,则从一个未被访问的顶点出发,重新进行深度优先遍历,直到图中所有顶点均被访问过为止。
    bool visited[MaxVnum];
void DFS(Graph G,int v)
{
    visited[v]= true; //从V开始访问,flag它
    printf("%d",v);    //打印出V
    for(int j=0;j<G.vexnum;j++) 
        if(G.arcs[v][j]==1&&visited[j]== false) //这里可以获得V未访问过的邻接点
            DFS(G,j); //递归调用,如果所有节点都被访问过,就回溯,而不再调用这里的DFS
}

void DFSTraverse(Graph G) {
    for (int v = 0; v < G.vexnum; v++)      //初始化图G
        visited[v] = false; //刚开始都没有被访问过

    for (int v = 0; v < G.vexnum; ++v)	//
        if (visited[v] == false) //从没有访问过的第一个元素来遍历图
            DFS(G, v);
}
时间复杂度o(n2)

广度优先BFS

1、首先将根节点放入队列中。
2、从队列中取出第一个节点,并检验它是否为目标。如果找到目标,则结束搜寻并回传结果。否则将它所有尚未检验过的直接子节点加入队列中。
3、若队列为空,表示整张图都检查过了——亦即图中没有欲搜寻的目标。结束搜寻并回传“找不到目标”。
4、重复步骤2。
#include <queue>
using namespace std;
....
void BFSTraverse(Graph G)
{
    for (int v=0;v<G.vexnum;v++) //先将其所有顶点都设为未访问状态
        visited[v]=false;
    queue<int> Q;
    for(int v=0;v<G.vexnum;v++)    
    {
        if(visited[v]==false)   //若该点没有访问
        {
            Q.push(v);    //将其加入到队列中
            visited[v]=true;
            while (!Q.empty())  //只要队列不空,遍历就没有结束
            {
                int t =Q.front();  //取出对头元素
                Q.pop();
                printf(" %d ",t+1);  
                for(int j=0;j<G.vexnum;j++) //将其未访问过的邻接点加进入队列
                    if(G.arcs[t][j]==1&&visited[j]== false)
                    {
                        Q.push(j);
                        visited[j]=true; //在这里要设置true,因为这里该顶点我们已经加入到了队列,为了防止重复加入!
                    }
            }
        }
    }
}
时间复杂度O(n2)
;