# 5.1.10—二叉树的遍历—Balanced Binary Tree

Given a binary tree, determine if it is height-balanced.
For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the
two subtrees of every node never differ by more than 1.

``````#include "BinaryTree.h"
#include <stack>
#include<queue>
#include<vector>
#include<algorithm>
#include<cmath>
using namespace std;
//===判断一棵二叉树是否是平衡树----递归版本
int HeightTree(BinaryTreeNode *proot)
{
if (!proot) return 0;
else
return HeightTree(proot->m_pLeft) > HeightTree(proot->m_pRight) ? 1 + HeightTree(proot->m_pLeft) : HeightTree(proot->m_pRight) + 1;
}
bool IsBalancedTree(BinaryTreeNode *proot)
{
if (!proot)
return true;

int left = HeightTree(proot->m_pLeft);
int right = HeightTree(proot->m_pRight);
if (abs(left - right) > 1)return false;
return IsBalancedTree(proot->m_pLeft)&&IsBalancedTree(proot->m_pRight);

}
// ====================测试代码====================
//            8
//        6      10
//       5 7    9  11
int main()
{
//===
BinaryTreeNode* pNode8 = CreateBinaryTreeNode(8);
BinaryTreeNode* pNode6 = CreateBinaryTreeNode(6);
BinaryTreeNode* pNode10 = CreateBinaryTreeNode(10);
BinaryTreeNode* pNode5 = CreateBinaryTreeNode(5);
BinaryTreeNode* pNode7 = CreateBinaryTreeNode(7);
BinaryTreeNode* pNode9 = CreateBinaryTreeNode(9);
BinaryTreeNode* pNode11 = CreateBinaryTreeNode(11);

ConnectTreeNodes(pNode8, pNode6,pNode10);
ConnectTreeNodes(pNode6, pNode5, pNode7);
ConnectTreeNodes(pNode10, pNode9, pNode11);

//===
//PrintTree(pNode8);
//===
bool flag = IsBalancedTree(pNode8);
cout << flag << endl;

DestroyTree(pNode8);
}
``````

;